• 已选条件:
 全选  【符合条件的数据共:60633条】

作者:Young, M.;Feiveson, A. H.;Schaefer, Caroline M.;等

发布日期:2017

发布机构:

预览  |  原文链接  |  全文  [ 浏览:8 下载:3  ]     分享

Back by popular demand, the JSC Biostatistics Laboratory and LSAH statisticians are offering an opportunity to discuss your statistical challenges and needs. Take the opportunity to meet the individuals offering expert statistical support to the JSC community. Join us for an informal conversation about any questions you may have encountered with issues of experimental design, analysis, or data visualization. Get answers to common questions about sample size, repeated measures, statistical assumptions, missing data, multiple testing, time-to-event data, and when to trust the results of your analyses.

作者:Rubin, D.;Reyes, D.;Urbina, M.;等

发布日期:2017

发布机构:

预览  |  原文链接  |  全文  [ 浏览:6 下载:7  ]     分享

Future exploration missions will be the first time humanity travels beyond Low Earth Orbit (LEO) since the Apollo program, taking us to cis-lunar space, interplanetary space, and Mars. These long-duration missions will cover vast distances, severely constraining opportunities for emergency evacuation to Earth and cargo resupply opportunities. Communication delays and blackouts between the crew and Mission Control will eliminate reliable, real-time telemedicine consultations. As a result, compared to current LEO operations onboard the International Space Station, exploration mission medical care requires an integrated medical system that provides additional in-situ capabilities and a significant increase in crew autonomy. The Medical System Concept of Operations for Mars Exploration Missions illustrates how a future NASA Mars program could ensure appropriate medical care for the crew of this highly autonomous mission. This Concept of Operations document, when complete, will document all mission phases through a series of mission use case scenarios that illustrate required medical capabilities, enabling the NASA Human Research Program (HRP) Exploration Medical Capability (ExMC) Element to plan, design, and prototype an integrated medical system to support human exploration to Mars.

作者:Shah, R. V.;Mulcahy, R.;Reyes, D.;等

发布日期:2017

发布机构:

预览  |  原文链接  |  全文  [ 浏览:3 下载:0  ]     分享

INTRODUCTION: Long-duration missions beyond low Earth orbit introduce new constraints to the space medical system. Beyond the traditional limitations in mass, power, and volume, consideration must be given to other factors such as the inability to evacuate to Earth, communication delays, and limitations in clinical skillsets. As NASA develops the medical system for an exploration mission, it must have an ability to evaluate the trade space of what resources will be most important. The Medical Optimization Network for Space Telemedicine Resources (MONSTR) was developed over the past year for this reason, and is now a system for managing data pertaining to medical resources and their relative importance when addressing medical conditions. METHODS: The MONSTR web application with a Microsoft SQL database backend was developed and made accessible to Tableau v9.3 for analysis and visualization. The database was initially populated with a list of medical conditions of concern for an exploration mission taken from the Integrated Medical Model (IMM), a probabilistic model designed to quantify in-flight medical risk. A team of physicians working within the Exploration Medical Capability Element of NASA's Human Research Program compiled a list diagnostic and treatment medical resources required to address best- and worst-case scenarios of each medical condition using a terrestrial standard of care and entered this data into the system. This list included both tangible resources (e.g. medical equipment, medications) and intangible resources (e.g. clinical skills required to perform a procedure). The physician team then assigned criticality values to each instance of a resource, representing the importance of that resource to diagnosing or treating its associated condition(s). Medical condition probabilities of occurrence during a Mars mission were pulled from the IMM and imported into the MONSTR database for use within a resource criticality-weighting algorithm. DISCUSSION: The MONSTR tool is a novel approach to assess the relative value of individual resources needed for the diagnosis and treatment of medical conditions. Future work will add resources for prevention and long term care of these conditions. Once data collection is complete, MONSTR will provide the operational and research communities at NASA with information to support informed decisions regarding areas of research investment, future crew training, and medical supplies manifested as part of any exploration medical system.

作者:Bentley, Nicole;Brower, David;Tang, Henry;等

发布日期:2017

发布机构:

预览  |  原文链接  |  全文  [ 浏览:0 下载:0  ]     分享

This paper presents the design and development of a friction-based coupling device for a fiber-optic monitoring system that can be deployed on existing subsea structures. This paper provides a summary of the design concept, prototype development, prototype performance testing, and design refinements of the device. The results of the laboratory testing of the first prototype performed at the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) are included in this paper. Limitations of the initial design were identified and future design improvements were proposed. These new features will enhance the coupling of the device and improve the monitoring system measurement capabilities. A major challenge of a post-installed instrumentation monitoring system is to ensure adequate coupling between the instruments and the structure of interest for reliable measurements. Friction-based coupling devices have the potential to overcome coupling limitations caused by marine growth and soil contamination on subsea structures, flowlines or risers. The work described in this paper investigates the design of a friction-based coupling device (friction clamp), which is applicable for pipelines and structures that are suspended in the water column and those that are resting on the seabed. The monitoring elements consist of fiber-optic sensors that are bonded to a metal clamshell with a high-friction coating. The friction clamp has a single hinge design to facilitate the operation of the clamp and dual rows of opposing fasteners to distribute the clamping force on the structure. The friction clamp can be installed by divers in shallow depths or by remotely operated vehicles in deep-water applications. NASA-JSC was involved in the selection and testing of the friction coating, and in the design and testing of the prototype clamp device. Four-inch diameter and eight-inch diameter sub-scale friction clamp prototypes were built and tested to evaluate the strain measuring capabilities of the design under different loading scenarios. The testing revealed some limitations of the initial design concept, and subsequent refinements were explored to improve the measurement performance of the system. This study was part of a collaboration between NASA-JSC and Astro Technology, Inc. within a study called Clear Gulf. The primary objective of the Clear Gulf study is to develop advanced instrumentation technologies that will improve operational safety and reduce the risk of hydrocarbon spillage. NASA provided unique insights, expansive test facilities, and technical expertise to advance these technologies that would benefit the environment, the public, and commercial industries.

作者:Lindsey, Nancy;Feather, Martin S.;Cornford, Steven L.;等

发布日期:2017

发布机构:

预览  |  原文链接  |  全文  [ 浏览:1 下载:0  ]     分享

Long duration and complex mission scenarios are characteristics of NASA's human exploration of Mars, and will provide unprecedented challenges. Systems reliability and safety will become increasingly demanding and management of uncertainty will be increasingly important. NASA's current pioneering strategy recognizes and relies upon assurance of crew and asset safety. In this regard, flexibility to develop and innovate in the emergence of new design environments and methodologies, encompassing modeling of complex systems, is essential to meet the challenges.

作者:Moore, Cherice, Williams, Antony, Svetlik, Randall

发布日期:2017

发布机构:

预览  |  原文链接  |  全文  [ 浏览:0 下载:0  ]     分享

As spaceflight durations have increased over the last four decades, the effects of microgravity on the human body have become far better understood, as have the exercise countermeasures. Through use of a combination of aerobic and resistive exercise devices, today's astronauts and cosmonauts are able to partially counter the losses in muscle strength, aerobic fitness, and bone strength that otherwise might occur during their missions on the International Space Station (ISS). Since 2000, the ISS has employed a variety of exercise equipment used as countermeasures to these risks. Providing reliable and available exercise systems has presented significant challenges due to the unique environment. In solving these, lessons have been learned that can inform development of future systems.