• 已选条件:
 全选  【符合条件的数据共:330212条】

来源:Orphanet Journal of Rare Diseases

作者:Margarita López-Trascasa;Ana Dopazo;Sofía Garrido;等

关键词:Infection;Hereditary angioedema;...

预览  |  原文链接  |  全文  [ 浏览:0 下载:0  ]     分享

Background

Hereditary Angioedema due to C1-Inhibitor deficiency (HAE types I and II) is a monogenic disease characterized by sudden, self-limited episodes of cutaneous and mucosal swelling due to local deregulation of vascular permeability. Despite its monogenic pattern of inheritance, HAE exhibits great clinical variability and low genotype/phenotype correlation among those affected, which ultimately hinders therapeutic approach and probably underlies yet unknown genetic and environmental factors.

Methods

We studied whole-genome RNA expression of PBMCs in three HAE type-I families (accounting for 40 individuals), 24 of which carry the same R472X mutation in the C1-Inhibitor gene and show large variability in terms of disease expression. Those included in this study were analyzed according to the presence of mutation and/or clinical symptoms.

Results

Instead of a single, common disease-associated expression pattern, we found different transcriptome signatures in two of the families studied. In one of them (referred to as DR family), symptoms correlate with the upregulation of 35 genes associated to the biological response to viral infections (including RSADs, OAS, MX and ISG pathway members) and immune response. In another pedigree (Q family), disease manifestation is linked to the upregulation of 43 genes with diverse functions, including transcription and protein folding. Moreover, symptoms-free members of the Q pedigree display relatively higher expression of 394 genes with a wide diversity of functions.

Conclusion

We found no evidence for a common altered PBMC expression pattern linked to HAE symptoms in the three families analyzed. All the data considered, differential gene expression in PBMCs do not seem to play a significant role in the predisposition or protection against HAE in the basal -between crises- conditions analyzed. Although the RNA expression pattern associated to the response to viral infections observed in the DR family supports the idea of infectious diseases as a modifying factor for HAE severity, large-scale studies would be needed to statistically associate such expression pattern to the development of this rare disease.

    来源:Orphanet Journal of Rare Diseases

    作者:Giuseppe Di Iorio;Corrado Angelini;Antonio Toscano;等

    关键词:Genotype-phenotype correlations;Mutation analysis;...

    预览  |  原文链接  |  全文  [ 浏览:0 下载:0  ]     分享

    Background

    Glycogenosis type II (GSDII or Pompe disease) is an autosomal recessive disease, often characterized by a progressive accumulation of glycogen within lysosomes caused by a deficiency of α-1,4-glucosidase (GAA; acid maltase), a key enzyme of the glycogen degradation pathway. To date, more than 326 different mutations in the GAA gene have been identified in patients with GSDII but the course of the disease is difficult to be predicted on the basis of molecular genetic changes. Studies on large informative families are advisable to better define how genetics and non genetics factors like exercise and diet may influence the clinical phenotype.

    Methods and results

    In this study, we report on clinical, instrumental, and pathological features as well as on molecular analysis of a family with 10 out of 13 siblings affected by late-onset Pompe disease. Three mutations segregated in the family, two of which are novel mutations. Siblings showing a more severe phenotype were compound heterozygous for c.118C > T [p.R40X] and c.2647-7G > A [p.N882fs] on GAA, whereas, two patients showing a mild phenotype were compound heterozygous c.2647-7G > A [p.N882fs] and c.2276G > C [p.G759A] mutations. Quantitative expression analysis showed, in the patients carrying p.R40X/ p.N882fs, a significant (p 0.01) correlation between the levels of expression of the mutated allele and the age at onset of the disease.

    Conclusions

    As far as we know, this is the largest informative family with late-onset Pompe disease described in the literature showing a peculiar complex set of mutations of GAA gene that may partially elucidate the clinical heterogeneity of this family.

      来源:Orphanet Journal of Rare Diseases

      作者:Mathieu Anheim;Michel Koenig;Christine Tranchant;等

      关键词:Mitochondrial disorders;Seizure disorder;...

      预览  |  原文链接  |  全文  [ 浏览:0 下载:0  ]     分享

      Autosomal recessive cerebellar ataxia 2 (ARCA2) is a recently identified recessive ataxia due to ubiquinone deficiency and biallelic mutations in the ADCK3 gene. The phenotype of the twenty-one patients reported worldwide varies greatly. Thus, it is difficult to decide which ataxic patients are good candidates for ADCK3 screening without evidence of ubiquinone deficiency. We report here the clinical and molecular data of 10 newly diagnosed patients from seven families and update the disease history of four additional patients reported in previous articles to delineate the clinical spectrum of ARCA2 phenotype and to provide a guide to the molecular diagnosis. First signs occurred before adulthood in all 14 patients. Cerebellar atrophy appeared in all instances. The progressivity and severity of ataxia varied greatly, but no patients had the typical inexorable ataxic course that characterizes other childhood-onset recessive ataxias. The ataxia was frequently associated with other neurological signs. Importantly, stroke-like episodes contributed to significant deterioration of the neurological status in two patients. Ubidecarenone therapy markedly improved the movement disorders, including ataxia, in two other patients. The 7 novel ADCK3 mutations found in the 10 new patients were two missense and five truncating mutations. There was no apparent correlation between the genotype and the phenotype. Our series reveals that the clinical spectrum of ARCA2 encompasses a range of ataxic phenotypes. On one end, it may manifest as a pure ataxia with very slow progressivity and, on the other end, as a severe infantile encephalopathy with cerebellar atrophy. The phenotype of most patients, however, lies in between. It is characterized by a very slowly progressive or apparently stable ataxia associated with other signs of central nervous system involvement. We suggest undergoing the molecular analysis of ADCK3 in patients with this phenotype and in those with cerebellar atrophy and a stroke-like episode. The diagnosis of patients with a severe ARCA2 phenotype may also be performed on the basis of biological data, i.e. low ubiquinone level or functional evidence of ubiquinone deficiency. This diagnosis is crucial since the neurological status of some patients may be improved by ubiquinone therapy.

        来源:Orphanet Journal of Rare Diseases

        作者:Muhammad Asim Khan Rehmani;Anum Saleem;Maria Saleem;等

        预览  |  原文链接  |  全文  [ 浏览:0 下载:0  ]     分享

        Fahr’s disease or Fahr’s syndrome is a rare, neurological disorder characterized by abnormal calcified deposits in basal ganglia and cerebral cortex. Calcified deposits are made up of calcium carbonate and calcium phosphate, and are commonly located in the Basal Ganglia, Thalamus, Hippocampus, Cerebral cortex, Cerebellar Subcortical white matter and Dentate Nucleus. Molecular genetics of this disease haven’t been studied extensively; hence evidence at the molecular and genetic level is limited. Fahr’s disease commonly affects young to middle aged adults. Etiology of this syndrome does not identify a specific agent but associations with a number of conditions have been noted; most common of which are endocrine disorders, mitochondrial myopathies, dermatological abnormalities and infectious diseases. Clinical manifestations of this disease incorporate a wide variety of symptoms, ranging from neurological symptoms of extrapyramidal system to neuropsychiatric abnormalities of memory and concentration to movement disorders including Parkinsonism, chorea and tremors amongst others. Diagnostic criteria for this disease has been formulated after modifications from previous evidence and can be stated briefly, it consist of bilateral calcification of basal ganglia, progressive neurologic dysfunction, absence of biochemical abnormalities, absence of an infectious, traumatic or toxic cause and a significant family history. Imaging modalities for the diagnosis include CT, MRI, and plain radiography of skull. Other investigations include blood and urine testing for hematologic and biochemical indices. Disease is as yet incurable but management and treatment strategies mainly focus on symptomatic relief and eradication of causative factors; however certain evidence is present to suggest that early diagnosis and treatment can reverse the calcification process leading to complete recovery of mental functions. Families with a known history of Fahr’s disease should be counseled prior to conception so that the birth of affected babies can be prevented. This review was written with the aim to remark on the current substantial evidence surrounding this disease.

          来源:Orphanet Journal of Rare Diseases

          作者:William G Newman, Siddharth Banka

          关键词:Uro-genital anomalies;Congenital cardiac defects;...

          预览  |  原文链接  |  全文  [ 浏览:0 下载:0  ]     分享

          The G6PC3 gene encodes the ubiquitously expressed glucose-6-phosphatase enzyme (G-6-Pase β or G-6-Pase 3 or G6PC3). Bi-allelic G6PC3 mutations cause a multi-system autosomal recessive disorder of G6PC3 deficiency (also called severe congenital neutropenia type 4, MIM 612541). To date, at least 57 patients with G6PC3 deficiency have been described in the literature.

          G6PC3 deficiency is characterized by severe congenital neutropenia, recurrent bacterial infections, intermittent thrombocytopenia in many patients, a prominent superficial venous pattern and a high incidence of congenital cardiac defects and uro-genital anomalies. The phenotypic spectrum of the condition is wide and includes rare manifestations such as maturation arrest of the myeloid lineage, a normocellular bone marrow, myelokathexis, lymphopaenia, thymic hypoplasia, inflammatory bowel disease, primary pulmonary hypertension, endocrine abnormalities, growth retardation, minor facial dysmorphism, skeletal and integument anomalies amongst others. Dursun syndrome is part of this extended spectrum. G6PC3 deficiency can also result in isolated non-syndromic severe neutropenia. G6PC3 mutations in result in reduced enzyme activity, endoplasmic reticulum stress response, increased rates of apoptosis of affected cells and dysfunction of neutrophil activity.

          In this review we demonstrate that loss of function in missense G6PC3 mutations likely results from decreased enzyme stability. The condition can be diagnosed by sequencing the G6PC3 gene. A number of G6PC3 founder mutations are known in various populations and a possible genotype-phenotype relationship also exists. G6PC3 deficiency should be considered as part of the differential diagnoses in any patient with unexplained congenital neutropenia.

          Treatment with G-CSF leads to improvement in neutrophil numbers, prevents infections and improves quality of life. Mildly affected patients can be managed with prophylactic antibiotics. Untreated G6PC3 deficiency can be fatal. Echocardiogram, renal and pelvic ultrasound scans should be performed in all cases of suspected or confirmed G6PC3 deficiency. Routine assessment should include biochemical profile, growth profile and monitoring for development of varicose veins or venous ulcers.

            来源:Orphanet Journal of Rare Diseases

            作者:Ludger Schöls;Inga Liepelt-Scarfone;Christian Frischholz;等

            关键词:Neurography;Somato-sensory evoked potential (SSEP);...

            预览  |  原文链接  |  全文  [ 浏览:0 下载:0  ]     分享

            Background

            Hereditary spastic paraplegias (HSPs) are characterised by lower limb spasticity due to degeneration of the corticospinal tract. We set out for an electrophysiological characterisation of motor and sensory tracts in patients with HSP.

            Methods

            We clinically and electrophysiologically examined a cohort of 128 patients with genetically confirmed or clinically probable HSP. Motor evoked potentials (MEPs) to arms and legs, somato-sensory evoked potentials of median and tibial nerves, and nerve conduction studies of tibial, ulnar, sural, and radial nerves were assessed.

            Results

            Whereas all patients showed clinical signs of spastic paraparesis, MEPs were normal in 27% of patients and revealed a broad spectrum with axonal or demyelinating features in the others. This heterogeneity can at least in part be explained by different underlying genotypes, hinting for distinct pathomechanisms in HSP subtypes. In the largest subgroup, SPG4, an axonal type of damage was evident. Comprehensive electrophysiological testing disclosed a more widespread affection of long fibre tracts involving peripheral nerves and the sensory system in 40%, respectively. Electrophysiological abnormalities correlated with the severity of clinical symptoms.

            Conclusions

            Whereas HSP is primarily considered as an upper motoneuron disorder, our data suggest a more widespread affection of motor and sensory tracts in the central and peripheral nervous system as a common finding in HSP. The distribution patterns of electrophysiological abnormalities were associated with distinct HSP genotypes and could reflect different underlying pathomechanisms. Electrophysiological measures are independent of symptomatic treatment and may therefore serve as a reliable biomarker in upcoming HSP trials.