期刊论文详细信息
Abstract and Applied Analysis
On Approximations by Trigonometric Polynomials of Classes of Functions Defined by Moduli of Smoothness
Marjan Dema ; Mikhail K. Potapov ; Faton M. Berisha ; Nimete Sh. Berisha
Faculty of Electrical and Computer Engineering, University of Prishtina, Prishtina, Kosovo, uni-pr.edu
Faculty of Mathematics and Sciences, University of Prishtina, Prishtina, Kosovo, uni-pr.edu
Faculty of Economics, University of Prishtina, Nëna Terezë 5, Prishtina, Kosovo, uni-pr.edu
Department of Mechanics and Mathematics, Moscow State University, Moscow 117234, Russia, msu.ru
Research Article
Others  :  1418095
DOI  :  10.1155/2017/9323181
Published In 2017, received in 2016-11-24, accepted in 2017-01-19
【 摘 要 】
In this paper, we give a characterization of Nikol’skiĭ-Besov type classes of functions, given by integral representations of moduli of smoothness, in terms of series over the moduli of smoothness. Also, necessary and sufficient conditions in terms of monotone or lacunary Fourier coefficients for a function to belong to such a class are given. In order to prove our results, we make use of certain recent reverse Copson-type and Leindler-type inequalities.
【 授权许可】

CC BY   
Copyright © 2017 Nimete Sh. Berisha et al. 2017

【 预 览 】
【 参考文献 】
  • [1]B. Laković. (1987). Ob odnom klasse funktsiĭ. Matematički Vesnik.39(4):405-415. DOI: 10.7153/mia-18-96.
  • [2]S. Tikhonov. (2005). Characteristics of Besov-Nikol'skiĭ class of function. Electronic Transactions on Numerical Analysis.19:94-104. DOI: 10.7153/mia-18-96.
  • [3]O. V. Besov, V. P. Il'in, S. M. Nikol’skiĭ. (1979). Integral Representations of Functions and Imbedding Theorems.2. DOI: 10.7153/mia-18-96.
  • [4]M. K. Potapov, F. M. Berisha, N. S. Berisha, R. Kadriu. et al.(2015). Some reverse lp-type inequalities involving certain quasi monotone sequences. Mathematical Inequalities and Applications.18(4):1245-1252. DOI: 10.7153/mia-18-96.
  • [5]S. Tikhonov. (2007). Trigonometric series with general monotone coefficients. Journal of Mathematical Analysis and Applications.326(1):721-735. DOI: 10.7153/mia-18-96.
  • [6]E. Liflyand, S. Tikhonov. (2011). A concept of general monotonicity and applications. Mathematische Nachrichten.284(8-9):1083-1098. DOI: 10.7153/mia-18-96.
  • [7]A. A. Konyushkov. (1957). O klassakh lipshitsa. Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya.21(3):423-448. DOI: 10.7153/mia-18-96.
  • [8]M. K. Potapov, M. Q. Berisha. (1979). Moduli of smoothness and the Fourier coefficients of periodic functions of one variable. Publications de l'Institut Mathématique (Beograd).26(40):215-228. DOI: 10.7153/mia-18-96.
  • [9]G. H. Hardy, J. E. Littlewood, G. Pólya. (1988). Inequalities. DOI: 10.7153/mia-18-96.
  • [10]E. T. Copson. (1928). Note on series of positive terms. Journal of the London Mathematical Society.1-3(1):49-51. DOI: 10.7153/mia-18-96.
  • [11]L. Leindler. (1970). Generalization of inequalities of Hardy and Littlewood. Acta Scientiarum Mathematicarum (Szeged).31:279-285. DOI: 10.7153/mia-18-96.
  • [12]L. Leindler. (2000). Power-monotone sequences and Fourier series with positive coefficients. JIPAM Journal of Inequalities in Pure and Applied Mathematics.1(1, article 1)-10. DOI: 10.7153/mia-18-96.
  • [13]S. Tikhonov, M. Zeltser. (2014). Weak monotonicity concept and its applications. Trends in Mathematics.63:357-374. DOI: 10.7153/mia-18-96.
  • [14]A. Zygmund. (1988). Trigonometric Series.2. DOI: 10.7153/mia-18-96.
  • [15]A. F. Timan. (1963). Theory of Approximation of Functions of a Real Variable.34. DOI: 10.7153/mia-18-96.
  • [16]M. Q. Berisha, F. M. Berisha. (1999). On monotone Fourier coefficients of a function belonging to Nikol'skiĭ-Besov classes. Mathematica Montisnigri.10:5-20. DOI: 10.7153/mia-18-96.
  文献评价指标  
  下载次数:21次 浏览次数:19次