Carbon Balance and Management
Case study for the assessment of the biogeophysical effects of a potential afforestation in Europe
Daniela Jacob ; Claas Teichmann ; Kevin Sieck ; Diana Rechid ; Georg Kindermann ; Andreas Hänsler ; Stefan Hagemann ; Borbála Gálos
IIASA, International Institute for Applied Systems Analysis, Laxenburg, Austria
Climate Service Center – eine Einrichtung am Helmholtz-Zentrum Geesthacht, Hamburg, Germany
Max Planck Institute for Meteorology, Hamburg, Germany
Regional climate modelling;    Climatic extremes;    Biogeophysical feedbacks;    Afforestation;    Land cover change;   
Others  :  790928
DOI  :  10.1186/1750-0680-8-3
Published In 8, received in 2012-11-08, accepted in 2012-12-10
【 摘 要 】


A regional-scale sensitivity study has been carried out to investigate the climatic effects of forest cover change in Europe. Applying REMO (regional climate model of the Max Planck Institute for Meteorology), the projected temperature and precipitation tendencies have been analysed for summer, based on the results of the A2 IPCC-SRES emission scenario simulation. For the end of the 21st century it has been studied, whether the assumed forest cover increase could reduce the effects of the greenhouse gas concentration change.


Based on the simulation results, biogeophysical effects of the hypothetic potential afforestation may lead to cooler and moister conditions during summer in most parts of the temperate zone. The largest relative effects of forest cover increase can be expected in northern Germany, Poland and Ukraine, which is 15–20% of the climate change signal for temperature and more than 50% for precipitation. In northern Germany and France, potential afforestation may enhance the effects of emission change, resulting in more severe heavy precipitation events. The probability of dry days and warm temperature extremes would decrease.


Large contiguous forest blocks can have distinctive biogeophysical effect on the climate on regional and local scale. In certain regions of the temperate zone, climate change signal due to greenhouse gas emission can be reduced by afforestation due to the dominant evaporative cooling effect during summer. Results of this case study with a hypothetical land cover change can contribute to the assessment of the role of forests in adapting to climate change. Thus they can build an important basis of the future forest policy.

【 授权许可】

2013 Gálos et al.; licensee BioMed Central Ltd.

【 预 览 】
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

【 参考文献 】
  • [1]Christensen JH, Carter TR, Rummukainen M, Amanatidis G: Evaluating the performance and utility of regional climate models: the PRUDENCE project. Clim. Change 2007, 81:1-6.
  • [2]Jacob D, Kotova L, Lorenz P, Moseley C, Pfeifer S: Regional climate modeling activities in relation to the CLAVIER project. Időjárás 2008, 112:141-153.
  • [3]Linden P, Mitchell JFB (Eds): ENSEMBLES: Climate Change and its Impacts: Summary of Research and Results from the ENSEMBLES Project. FitzRoy Road, Exeter EX1 3 PB, UK: Met Office Hadley Centre; 2009:160.
  • [4]Giorgi F, Bi X, Pal JS: Mean, interannual variability and trends in a regional climate change experiment over Europe. II: climate change scenarios (2071–2100). Clim Dyn 2004, 23:839-858.
  • [5]Christensen JH, Christensen OB: A summary of the PRUDENCE model projections of changes in European climate by the end of this century. Clim Change 2007, 81:7-30.
  • [6]Schär C, Vidale PL, Lüthi D, Frei C, Häberli C, Liniger MA, Appenzeller C: The role of increasing temperature variability in European summer heatwaves. Nature 2004, 427:332-336.
  • [7]Seneviratne SI, Lüthi D, Litschi M, Schär C: Land-atmosphere coupling and climate change in Europe. Nature 2006, 443:205-209.
  • [8]Beniston M, Stephenson DB, Christensen OB, Ferro CAT, Frei C, Goyette S, Halsnaes K, Holt T, Jylhä K, Koffi B, Palutikof J, Schöll R, Semmler T, Woth K: Future extreme events in European climate: an exploration of regional climate model projections. Clim Change 2007, 81:71-95.
  • [9]Kjellström E, Bärring L, Jacob D, Jones R, Lenderink G, Schär C: Modelling daily temperature extremes: recent climate and future changes over Europe. Clim Chang 2007, 81:249-265.
  • [10]Vidale PL, Lüthi D, Wegmann R, Schär C: European summer climate variability in a heterogeneous multi-model ensemble. Clim Chang 2007, 81:209-232.
  • [11]Fischer EM, Schär C: Consistent geographical patterns of changes in high-impact European heatwaves. Nat Geosci 2010, 3:398-403.
  • [12]Beniston M: Trends in joint quantiles of temperature and precipitation in Europe since 1901 and projected for 2100. Geophys Res Lett 2009, 36:L07707.
  • [13]Mishra AK, Singh VP: A review of drought concepts. J of Hydrology 2010, 391:202-216.
  • [14]Pal JS, Giorgi F, Bi X: Consistency of recent European summer precipitation trends and extremes with future regional climate projections. Geophys Res Lett 2004, 31(4pp):L13202.
  • [15]Semmler T, Jacob D: Modeling extreme precipitation events – a climate change simulation for Europe. Special Issue in Planetary and Global Change 2004, 44:119-127.
  • [16]Buonomo E, Jones R, Huntingford C, Hannaford J: On the robustness of changes in extreme precipitation over Europe from two high-resolution climate change simulations. Q J R Meteor Soc 2007, 133:65-81.
  • [17]Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg EH, Gonzalez P, Fensham R, Zhang Z, Castro J, Demidova N, Lim J-H, Allard G, Running SW, Semerci A, Cobb N: A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manage 2010, 259:660-684.
  • [18]Martinez-Vilalta J, Lloret F, Breshears DD: Drought-induced forest decline: causes, scope and implications. Biol Lett 2012, 8(5):689-691.
  • [19]Mátyás C: Ecological perspectives of climate change in Europe’s continental, drought-threatened Southeast. In Regional Aspects of Climate-Terrestrial-Hydrologic Interactions in Non-Boreal Eastern Europe. Edited by Groisman PY, Ivanov SV. Berlin: NATO Science Series, Springer Verl; 2009:31-42.
  • [20]Mátyás C: Forecasts needed for retreating forests (Opinion). Nature 2010, 464:1271.
  • [21]Mátyás C, Berki I, Czúcz B, Gálos B, Móricz N, Rasztovits E: Future of beech in Southeast Europe from the perspective of evolutionary ecology. Acta Silv Lign Hung 2010, 6:91-110.
  • [22]Czúcz B, Gálhidy L, Mátyás C: Present and forecasted xeric climatic limits of beech and sessile oak distribution at low altitudes in Central Europe. Ann For Sci 2011, 68(1):99-108.
  • [23]Bredemeier M: Forest, climate and water issues in Europe. Ecohydrol 2011, 4:159-167.
  • [24]Brovkin V: Climate-vegetation interaction. J Phys IV France 2002, 12:57-82.
  • [25]Feddema JJ, Oleson KW, Bonan GB, Mearns LO, Buja LE, Meehl GA, Washington WM: The importance of land-cover change in simulating future climates. Science 2005, 310:1674-1678.
  • [26]Pielke RA, Avissar SR, Raupach M, Dolman AJ, Zeng X, Denning AS: Interactions between the atmosphere and terrestrial ecosystems: influence on weather and climate. Glob Chang Biol 1998, 4:461-475.
  • [27]Pitman AJ: The evolution off, and revolution in, land surface schemes designed for climate model. Int J Climatol 2003, 23:479-510.
  • [28]Arora VK, Montenegro A: Small temperature benefits provided by realistic afforestation efforts. Nature Geoscience 2011.
  • [29]Bonan GB: Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 2008, 320:1444-1449.
  • [30]Wramneby A, Smith B, Samuelsson P: Hot spots of vegetation-climate feedbacks under future greenhouse forcing in Europe. J Geophys Res 2010, 115:D21119.
  • [31]Pongratz J, Reick CH, Raddatz T, Caldeira K, Claussen M: Past land use decisions have increased mitigation potential of reforestation. Geophys Res Lett 2011, 38:L15701.
  • [32]Jackson RB, Randerson JT, Canadell JG, Anderson RG, Avissar R, Baldocchi DD, Bonan GB, Caldeira K, Diffenbaugh NS, Field CB, Hungate BA, Jobbágy EG, Kueppers LM, Nosetto MD, Pataki DE: Protecting climate with forests. Environ Res Lett 2008, 3(5pp):044006.
  • [33]Bala G, Caldeira K, Wickett M, Phillips TJ, Lobell DB, Delire C, Mirin A: Combined climate and carbon-cycle effects of large-scale deforestation. Proc Natl Acad Sci USA 2007, 104:6550-6555.
  • [34]Anderson RG, et al.: Biophysical considerations in forestry for climate protection. Front Ecol Environ 2010.
  • [35]Bounoua L, Defries R, Collatz GJ, Sellers P, Khan H: Effects of land cover conversion on surface climate. Clim Chang 2002, 52:29-64.
  • [36]Oleson KW, Bonan GB, Levis S, Vertenstein M: Effects of land use change on North American climate: impact of surface datasets and model Biogeophysics. Clim Dyn 2004, 23:117-132.
  • [37]Anav A, Ruti PM, Artale V, Valentini R: Modelling the effects of land-cover changes on surface climate in the Mediterranean region. Clim Res 2010, 41:91-104.
  • [38]Hogg EH, Price DT, Black TA: Postulated feedbacks of deciduous forest phenology on seasonal climate patterns in the Western Canadian interior. J Climate 2000, 13:4229-4243.
  • [39]Gálos B, Mátyás C, Jacob D: Regional characteristics of climate change altering effects of afforestation. Environ Res Lett 2011, 6(9pp):044010.
  • [40]Teuling AJ, Seneviratne SI, Stoeckli R, Reichstein M, Moors E, Ciais P, Luyssaert S, van den Hurk B, Ammann C, Bernhofer C, Dellwik E, Gianelle D, Gielen B, Gruenwald T, Klumpp K, Montagnani L, Moureaux C, Sottocornola M, Wohlfahrt G: Contrasting response of European forest and grassland energy exchange to heatwaves. Nat Geosci 2010, 3(10):722-727.
  • [41]FAO: The State of the World’s Forests 2011. Rome: Food and Agriculture Organisation of the United Nations; 2011.
  • [42]Jacob D, Andrae U, Elgered G, Fortelius C, Graham LP, Jackson SD, Karstens U, Koepken C, Lindau R, Podzun R, Rockel B, Rubel F, Sass HB, Smith RND, van den Hurk BJJM, Yang X: A comprehensive model intercomparison study investigating the water budget during the BALTEX-PIDCAP Period. Meteorology and Atmospheric Physics 2001, 77(1–4):19-43.
  • [43]Jacob D, Bärring L, Christensen OB, Christensen JH, de Castro M, Déqué M, Giorgi F, Hagemann S, Hirschi M, Jones R, Kjellström E, Lenderink G, Rockel B, Sánchez E, Schär C, Seneviratne SI, Sommot S, van Ulden A, van den Hurk B: An inter-comparison of regional climate models for Europe: model performance in present-day climate. Clim Chang 2007, 81:31-52.
  • [44]Peterson TC, Folland C, Gruza G, Hogg W, Mokssit A, Plummer N: Report on the Activities of the Working Group on Climate Change Detection and Related Rapporteurs 1998– 2001. Geneva, Switzerland: World Meteorological Organisation Rep. WCDMP-47, WMO-TD 1071; 2001:143.
  • [45]Seneviratne SI, et al.: Investigating soil moisture-climate interactions in a changing climate: a review. Earth Sci Rev 2010, 99:125-161.
  • [46]Drüszler A, Vig P, Csirmaz K: Effects of historical land cover changes on the precipitation distribution in Hungary. Riscuri Si Catastrofe (Risks and Disasters) 2011, 391-418. ISSN: 15845273; I/2011
  • [47]De Noblet-Ducoudré N, et al.: Determining robust impacts of land-use-induced land cover changes on surface climate over North America and Eurasia: results from the first set of LUCID experiments. J Climate 2012, 25:3261-3281.
  • [48]Sánchez E, Gaertner MA, Gallardo C, Padorno E, Arribas A, Castro M: Impacts of a change in vegetation description on simulated European summer present-day and future climates. Clim Dyn 2007, 29:319-332.
  • [49]Boisier JP, de Noblet-Ducoudré N, Pitman AJ, Cruz FT, Delire C, Van den Hurk BJJM, Van der Molen MK, Müller C, Voldoire A: Attributing the impacts of land-cover changes in temperate regions on surface temperature and heat fluxes to specific causes: Results from the first LUCID set of simulations. J Geophys Res 2012, 117:D12116.
  • [50]Booth BBB, Jones CD, Collins M, Totterdell IJ, Cox PM, Sitch S, Huntingford C, Betts RA, Harris GR, Jon L: High sensitivity of future global warming to land carbon cycle processes. Environ Res Lett 2012, 7(8pp):024002.
  • [51]Cao L, Bala G, Caldeira K, Nemani R, Ban-Weissa G: Importance of carbon dioxide physiological forcing to future climate change. Proc Natl Acad Sci 2010, 107(21):9513-1918.
  • [52]Gopalakrishnan R, Bala G, Jayaraman M, Cao L, Nemani R, Ravindranath NH NH: Sensitivity of terrestrial water and energy budgets to CO2-physiological forcing: an investigation using an offline land model. Environ Res Lett 2011, 6(7pp):044013.
  • [53]Roeckner E, Arpe K, Bengtsson L, Christoph M, Claussen M, Dümenil L, Esch M, Giorgetta M, Schlese U, Schulzweida U: The Atmospheric General Circulation Model ECHAM-4: Model Description and Simulation of the Present Day Climate. Max-Planck-Institut für Meteorologie, Hamburg Report 218; 1996. http://www.mpimet.mpg.de/fileadmin/publikationen/Reports/MPI-Report_218.pdf webcite
  • [54]Hagemann S, Botzet M, Dümenil L, Machenhauer M: Derivation of Global GCM Boundary Conditions from 1 km Land Use Satellite Data. Max-Planck-Institute for Meteorology, Hamburg Report 289; 1999. http://www.mpimet.mpg.de/fileadmin/publikationen/Reports/max_scirep_289.pdf webcite
  • [55]Hagemann S: An Improved Land Surface Parameter Dataset for Global and Regional Climate Models. Max-Planck-Institute for Meteorology, Hamburg Report 336; 2002.
  • [56]Feddes RA, Kabat P, Dolman AJ, Hutjes RWA, Waterloo MJ: Large-scale field experiments to improve land surface parameterisations. In Proceedings of ‘The Second International Conference on Climate and Water’. Edited by Lemmelä R, Helenius N. Finland: Espoo; 1998:619-646. 17–20 August
  • [57]Mason PJ: The formation of areally-averaged roughness lengths. Q J R Meteor Soc 1988, 114:399-420.
  • [58]Rechid D, Jacob D: Influence of monthly varying vegetation on the simulated climate in Europe. Meteorol Z 2006, 15:99-116.
  • [59]Rechid D, Raddatz TJ, Jacob D: Parameterization of snow-free land surface albedo as a function of vegetation phenology based on MODIS data and applied in climate modelling. Theor Appl Climatol 2008.
  • [60]Rechid D, Hagemann S, Jacob D: Sensitivity of climate models to seasonal variability of snow-free land surface albedo. Theor Appl Climatol 2008.
  • [61]Déqué M, Jones RG, Wild M, Giorgi F, Christensen JH, Hassell DC, Vidale PL, Rockel B, Jacob D, Kjellström E, de Castro M, Kucharski F, van den Hurk B: Global high resolution versus limited area model scenarios over Europe: results from the PRUDENCE project. Clim Dyn 2005, 25:653-670.
  • [62]Roeckner E, Brokopf R, Esch M, Giorgetta M, Hagemann S, Kornblueh L, Manzini E, Schlese U, Schulzweida U: Sensitivity of simulated climate to horizontal and vertical resolution in the ECHAM5 atmosphere model. J Clim 2006, 19:3771-3791.
  • [63]Jungclaus JH, Keenlyside N, Botzet M, Haak H, Luo J-J, Latif M, Marotzke J, Mikolajewicz U, Roeckner E: Ocean circulation and tropical variability in the coupled model ECHAM5/MPI-OM. J Climate 2006, 19:3952-3972.
  • [64]Nakicenovic N, et al.: IPCC Special Report on Emission Scenarios. Cambridge: Cambridge University Press; 2000:599.
  • [65]Mann H, Whitney D: On a test of whether one of two random variables is stochastically larger than the other. Ann Math Stat 1947, 18:50-60.
  下载次数:76次 浏览次数:34次